Multiple Renal Cyst Development but Not Situs Abnormalities in Transgenic RNAi Mice against Inv::GFP Rescue Gene
نویسندگان
چکیده
In this study we generated RNA interference (RNAi)-mediated gene knockdown transgenic mice (transgenic RNAi mice) against the functional Inv gene. Inv mutant mice show consistently reversed internal organs (situs inversus), multiple renal cysts and neonatal lethality. The Inv::GFP-rescue mice, which introduced the Inv::GFP fusion gene, can rescue inv mutant mice phenotypes. This indicates that the Inv::GFP gene is functional in vivo. To analyze the physiological functions of the Inv gene, and to demonstrate the availability of transgenic RNAi mice, we introduced a short hairpin RNA expression vector against GFP mRNA into Inv::GFP-rescue mice and analyzed the gene silencing effects and Inv functions by examining phenotypes. Transgenic RNAi mice with the Inv::GFP-rescue gene (Inv-KD mice) down-regulated Inv::GFP fusion protein and showed hypomorphic phenotypes of inv mutant mice, such as renal cyst development, but not situs abnormalities or postnatal lethality. This indicates that shRNAi-mediated gene silencing systems that target the tag sequence of the fusion gene work properly in vivo, and suggests that a relatively high level of Inv protein is required for kidney development in contrast to left/right axis determination. Inv::GFP protein was significantly down-regulated in the germ cells of Inv-KD mice testis compared with somatic cells, suggesting the existence of a testicular germ cell-specific enhanced RNAi system that regulates germ cell development. The Inv-KD mouse is useful for studying Inv gene functions in adult tissue that are unable to be analyzed in inv mutant mice showing postnatal lethality. In addition, the shRNA-based gene silencing system against the tag sequence of the fusion gene can be utilized as a new technique to regulate gene expression in either in vitro or in vivo experiments.
منابع مشابه
The left-right determinant Inversin is a component of node monocilia and other 9+0 cilia.
Inversin (Inv), a protein that contains ankyrin repeats, plays a key role in left-right determination during mammalian embryonic development, but its precise function remains unknown. Transgenic mice expressing an Inv and green fluorescent protein (GFP) fusion construct (Inv::GFP) were established to facilitate characterization of the subcellular localization of Inv. The Inv::GFP transgene resc...
متن کاملERK Regulates Renal Cell Proliferation and Renal Cyst Expansion in inv Mutant Mice
Nephronophthisis (NPHP) is the most frequent genetic cause of end-stage kidney disease in children and young adults. Inv mice are a model for human nephronophthisis type 2 (NPHP2) and characterized by multiple renal cysts and situs inversus. Renal epithelial cells in inv cystic kidneys show increased cell proliferation. We studied the ERK pathway to understand the mechanisms that induce cell pr...
متن کاملLocalization of Inv in a distinctive intraciliary compartment requires the C-terminal ninein-homolog-containing region.
The primary cilium is an antenna-like structure extending from the surface of most vertebrate cells. Loss or mutation of ciliary proteins can lead to polycystic kidney disease and other developmental abnormalities. inv mutant mice develop multiple renal cysts and are a model for human nephronophthisis type 2. The mouse Inv gene encodes a 1062-amino-acid protein that is localized in primary cili...
متن کاملRenal cysts of inv/inv mice resemble early infantile nephronophthisis.
Cystic kidney disease has been linked to mutations in the Invs gene in mice with inversion of embryonic turning (inv/inv) and the INVS (NPHP2) gene in infants with nephronophthisis type 2 (NPHP2). The inv mouse model features multiorgan defects including renal cysts, altered left-right laterality, and hepatobiliary duct malformations transmitted in an autosomal recessive manner. Affected mice u...
متن کاملPrimary cilia of inv/inv mouse renal epithelial cells sense physiological fluid flow: bending of primary cilia and Ca2+ influx.
Primary cilia are hypothesized to act as a mechanical sensor to detect renal tubular fluid flow. Anomalous structure of primary cilia and/or impairment of increases in intracellular Ca2+ concentration in response to fluid flow are thought to result in renal cyst formation in conditional kif3a knockout, Tg737 and pkd1/pkd2 mutant mice. The mutant inv/inv mouse develops multiple renal cysts like ...
متن کامل